Introduction

This Note lists a number of application circuits for Intersil's digitally-controlled (XDCP) potentiometers. The application circuits, shown in basic form, illustrate the wide variety of possible functions that can be implemented using the variability of the potentiometer in conjunction with standard active devices like operational amplifiers and comparators. The types of circuits include control circuits, converters, filters, signal processing circuits, regulators, waveshapers, analog computing circuits, and signal sources. In the detail design of these circuits, proper supply filtering and proper grounding techniques must be used.

Intersil's potentiometers are controlled through the 2-wire, 3wire, or SPI computer serial-interfaces or buses. For front panel, pushbutton type applications, Intersil's pushpots are

Applications

Three terminal Potentiometer; Variable voltage divider

Two terminal Variable Resistor; Variable current

FIGURE 1. Basic Configurations of Electronic Potentiometers

Application Circuits

Cascading Techniques

Noninverting Amplifier

$V_{O}=\left(1+R_{2} / R_{1}\right) V_{S}$

Offset Voltage Adjustment

Comparator with Hysterisis

[^0]
Application Circuits

Function Generator

frequency $\propto \mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{C}$ amplitude $\propto \mathbf{R}_{A}, \mathbf{R}_{B}$

Application Circuits

I to V Converter

$$
v_{0} / I_{s}=-R_{3}\left(1+R_{2} / R_{1}\right)+R_{2}
$$

Phase Shifter

$$
\Varangle \mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{S}}=180^{\circ}-2 \tan ^{-1} \omega \mathrm{RC}
$$

Capacitance Multiplier

$$
C_{I N}=C\left(1+R_{2} / R_{1}\right)
$$

Level Detector

$\mathrm{V}_{\text {OUT }}=$ High for $\mathrm{V}_{\mathrm{S}}<-\frac{\mathrm{R}_{1}}{\mathbf{R}_{2}} \mathrm{~V}_{\mathrm{R}}$
$V_{\text {OUT }}=$ Low for $V_{S}>-\frac{R_{1}}{R_{2}} V_{R}$
$R_{1}+R_{2}=R_{\text {POT }}$

Application Circuits

Time Delay

$$
\Delta t=R C \ln \quad\left(\frac{5 V}{5 V-V_{w}}\right)
$$

For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: $V_{U L}=\left\{R_{1} /\left(R_{1}+R_{2}\right)\right\} V_{O}$ (max)
 $V_{L L}=\left\{R_{1} /\left(R_{1}+R_{2}\right)\right\} V_{0}($ min $)$

